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LETTER TO THE EDITOR 

On the complete solution of the Hirota-Satsuma system 
through the ‘dressing’ operator technique 

A Roy Chowdhury and Shankar Basak 
High Energy Physics Division, Department of Physics, Jadavpur University, Calcutta- 
700 032, India 

Received 7 March 1984, in final form 24 July 1984 

Abstract. We have applied the ‘dressing’ operator method of Zakharov et a1 for obtaining 
the complete solution of the Hirota-Satsuma coupled system. This method helps us 
essentially to solve the inverse problem associated with a fourth-order differential operator. 
Also the method of the ‘dressing’ operator has the distinct advantage of generating solutions 
other than soliton by varying the boundary condition in an appropriate fashion. 

In recent times there have been several attempts to perform inverse spectral analysis 
of the higher order differential operator, for solving a wider class of nonlinear equation. 
Among the successful attempts we can mention those of Caudrey (1982), Kaup (1980) 
and Dieft et al (1982). However, each of these papers deals with a third-order 
eigenvalue problem. We here proceed for the exact solution of the coupled system of 
Hirota and Satsuma (1981), which is shown to be completely integrable with the help 
of a fourth-order eigenvalue problem. 

The associated time dependence is governed by a third-order operator. Since the 
formulation of the inverse problem for the fourth-order operator is quite complicated 
we have followed a different route by applying the dressing operator technique of 
Zakharov er al to the bare operators. The methodology yields solutions more general 
than the inverse scattering technique according to the nature of the imposed boundary 
condition. 

The equations under consideration read: 

U, - U (  U,, +6UUx) =2b44,, 4, + 4 3 x  - 3 U4X = 0. ( 1 )  
It has been shown recently that this system admits a Lax representation involving a 
fourth-order eigenvalue operator L and a third-order time evolution operator M, written 
as: 

L = -a: + 2  uaf +2(  U, - +x)ax + U,, - 4,, + u2 - (b2 

M = -2(a: +3uax  +:U, -34,). (2) 
So an effective construction of solutions belonging to the soliton, breather or any other 
class can be possible only with the help of an IST applied to L+ = A$ and adjoining 
the time evolution GI = MG. But as we noted earlier the formulation of IST even for a 
third-order operator is not straightforward. So we started from the bare operators 
Lo = -8: and MO = -28: and followed the procedure of dressing up the bare operators 
to construct those mentioned in equation (2) along with the explicit solutions of 4 
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and U in terms of kernels obeying linear differential equations. In practice we usually 
deal with the Volterra kernels K ,  and K-. 

To proceed with the formulation we first set up some notations. The bare operators 
are denoted by ‘zero’ subscripts. In our particular case we denote: 

i;= /,a:, I ,  = 1 ii = 1,a;, I, = -2  

and define: 

A, = ffa, +i, 
i, =a: +2uaZ, + 2 (  U, - 4,)ax + U,, - 4,, + u2 - 4, 
MI = @a, +LA (3)  

2 
where we have also set M2 = ii, M2 = i’. Now the basic technique in the construction 
of the dressed up operator from the bare one is to use the Volterra triangular operator 
K ,  and K -  which are taken to be factors of F :  

1 + F = ( l  +K+)-’(l + K - ) .  ( 4) 

In this section and the following we have :xclusiyely used the notation of the excellent 
article by Manin (1978). Operations of F and K are defined through: 

m 

$+ = F(xz)+(z) dz 
--CO 

It is easy to demonstrate that F and K satisfy the Gelfand-Levitan equation: 

K ( xy ) + F (  xy ) + [ K ( xs ) F ( sy ) ds  = 0. 
X 

With the help of the basic theorems of the dressing operators we construct first the 
differential equations satisfied by F and K. 

Let us start by considering $ to be a simultaneous eigenfunction of 

[k,, f i ] $  = 0 and [k,fi]$ = 0. 

Then using the form of A, we get 

Using = a t  we have 
m 02 

F(xz)$(z) dz +4” F(xz)$(z) dz I_, 
m -1 F ( x ~ ) [ a a $ / a t + i b ‘ ) ( z ) $ ( ~ ) ]  d z = 0 .  
-m 

Integrating by parts we get: 

(7) 

+(z)dz=O 
aF a4F(xz) a4F(xz) 

a - + r - -  
a t  ax az4 
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which implies: 

aF a4F(Xz) a4F(xz) 
a - + 7 - - =  0. 

a t  ax az4 

L865 

(8) 

Similarly from the second equation of (7)  we get: 

dz=O a 3 + W  F(xz)$(z) dz + 2  F(xz) - 
a of 

1-m az3 
or 

which implies 

a 3 ~ ( x ~ ) / a ~ 3  + a 3 ~ ( x z ) / a z 3  = 0. ( 9 )  

(8) and (9) are the basic equations satisfied by the operator. These solutions used in 
the Gelfand-Levitan equation ( 6 )  yield K(xy) which in turn is to be connected to the 
nonlinear fields. 

The basic equations of operator dressing are: 

( l + & J ( 1 + 2 + ) $ = ( 1  + i + ) ( l  +A,)$ 
( 1  + d 2 ) ( 1  + 2 + ) $ = ( 1  + 2 + ) ( 1  +A2)$. (10) 

Writing out the first equation of (10) we get: 

Now making extensive use of the following formulae: 

a: lXm K(xz)$(z) dz = 

n - I  

i = O  
- 1 a:{a:-l-iK(xz)(,=x $(x)} 

and: 

Ixm K(xz)a:J/(z) dz=(-1)"  a:K(xz)$(z) dz Jxm 
n- I  

+ c (-l)'+'[alK(Xz)]a:-'-i$(X), 
i = O  
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we get the following equations connecting the nonlinear fields U, 4 to the kernel 
K(xz) and also the equation satisfied by K. 

U = 2d(K(xx))/dx (13) 

- a,[( a,K ( XZ)),=,] - 2K ( XX) dK ( n ) / d x  (14) 

-[a5,K(xz)lZ=, - ~ u ( ~ , K ( x z ) ) , = ,  +2(4, - U,)K(XX) 

+ U,, - 4,, + U’ = 42 = a;K(x~)l,=,. (15) 

6, =i[atK(xz)-aZ,K(xz)],,, +id2K(xx)/dxZ 

An effective way of constructing an explicit solution is to solve equations (8) and 
(9) which after the change of variables w = x + z and v = x - z, are transformed to the 
following form: 

(a/aw)(a2F/ao2 +3a2F/av2) = o 
aaF/at + 8(aZ/awa ~ ) ( a ~ ~ / a o ~  + a2F/ a v2) = 0. 

The first equation of (16) can be integrated in several ways by choosing different 
constants of integration. 

We here choose the simplest one and consider only that class of solutions for which 

a2F/aw2 + 3 a 2 ~ / a v Z  = 0. 

A general solution of this equation can be written as: 

F = Ca( v + iw 4s) + 9( v - iw A) 
where the dependence of the time variable is still to be fixed by the second equation 
of (16). Substituting this expression in the second equation (16) (here we have 
performed the calculation with the first term of (17) but a similar calculation can be 
done with the second term also), we obtain 

aa@/at  - 16iq a4o/aq4 = o 

77 = v + i w J s .  

(18) 

where 

The most general solution of equation (18) is 

@(q, t)=’ Im e - ( X 2 + y 2 ) A ( 7 7 + 2 ~ y ~ A ’ t ” 4 )  dx dy (19) 
--CO -m 

where A is an arbitrary function. 

(19) which yields: 
Instead of discussing the most general situation we here consider a special case of 

Q=cosh(v+iw&) exp ( 1 6 i h t l a ) .  (20) 
Using (17) and (20) the Gelfand-Levitan equation can be recast into the form 

cosh(2w’~-2w‘~x) exp( 16i&t/a)+ K(xz) 

+IXm K(xs) cosh(2w’z-2w:*) exp(l6i&t/a) ds=O. 
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We seek a solution of K in the form: 

K(xz) = exp( 1 6 i h t / a )  (xzt) 

= exp(-16i&t/a)[A(xt) cosh(2w’z -2wL2) 

+ B(xt) sinh(2w’z -2wL2)] 

which when used in (21) yields 

A = ( l /q ) [ l  +exp(16iht/a)(wf2/2i&) sinh(2i&x)] 

B =  - ( 1 / q ) ( w f 2 / 2 i h ) e x p ( 1 6 i & t / a )  cosh(2ihx)  
U13 = 1 

In our above expressions w’ is the cube root of unity. It is interesting to observe that 
if we search for separable solutions of equation (18) then the biharmonic equation 
that results for the spatial part possesses both hyperbolic and sinusoidal type solutions. 
In equations (19), (20) and (21) we have chosen only one type of solution. Plugging 
these solutions for K(xz) in (13) and (14) we can now obtain the nonlinear fields 
U(xt) and 4(xt) .  Also it is interesting to observe that equation (15) is identically 
satisfied by any particular set of solutions for U, 4 and K. Though our displayed 
solution for A, B involves hyperbolic functions, since their arguments are imaginary, 
they are actually sinusoidal functions. These types of rational solutions for U and 4 
which involve these two types of functions are not usually obtainable through the 
usual procedure of inverse scattering transform. Furthermore it should be noted that 
by considering exponential solutions of F(xy) we can generate soliton or multisoliton 
solutions. For example let us consider F in the form: 

R 
F(xz) = A exp -- (Ax - z) + ( A - 1  

which yields: 

K(xz) = -[A exp( A - 1  (Ax - .))I/[ $ e-& +exp( a ( l  -4Rt - A ) 3  )] 
implying the following structure for U and 4 :  

U = ( R2/2) sech2(pt + Rx - log A/ R )  

which asymptotically goes to zero as x + CO. On the other hand the other nonlinear 
field 4 is given as: 

4=(5R2/8)sech2 

So that as x + q  ++ -AR2/(A - 1 )  (a constant) and these two asymptotic values of 
U and 4 are consistent with the nonlinear equation (1) .  At this point we can mention 
that by adjusting the values of the constants R, p, A and A it is possible to manufacture 
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a solution which is simply proportional to tanh 6, tending to a constant value for large 
values of x and t. 

In our above calculation we have demonstrated that it is possible to obtain explicit 
soliton or rational solutions for the Hirota-Satsuma system via the dressing operator 
formalism. The procedure is actually an ‘inversion’ of the fourth-order differential 
operator without actually using the ‘scattering data’. 
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